CYANOSELENENYLATION OF KETENE ACETALS. SYNTHESIS OF CARBONYL-PROTECTED $\alpha\text{-}OXO$ CARBONITRILES $^{1})$

Shuji TOMODA, Yoshito TAKEUCHI, and Yujiro NOMURA Department of Chemistry, College of General Education The University of Tokyo, Komaba, Meguro-ku, Tokyo 153

The reaction of ketene acetals with phenyl selenocyanate afforded a new type of compounds, α,α -dioxy- β -phenylseleno carbonitriles(carbonyl-protected α -oxo carbonitriles), in good yields. Oxidation of these vicinal cyanoselenenylation products gave β,γ -unsaturated α,α -dioxy carbonitriles in excellent yields.

In earlier communications, we reported efficient addition reaction of phenyl selenocyanate $(\underline{1})^2$ to olefins, such as enamines 3 and simple alkenes. 4 This reaction, which we call cyanoselenenylation, is among a few reactions which can introduce a cyano group directly into the carbon-carbon double bond. 5 We now wish to report that cyanoselenenylation can also be effected with ketene acetals $(\underline{2})$ to provide α,α -dioxy- β -phenylseleno carbonitriles $(\underline{3})$ (carbonyl-protected α -oxo carbonitriles 6), a new structural type of compounds which are of considerable potential utility to construct latent α -amino ketone unit 7 frequently found in alkaloids.

$$R^{1} CH \xrightarrow{QR^{2}} PhSeCN (1) \xrightarrow{R^{1}} QR^{3} QR^{2}$$

$$PhSeCN (1) \xrightarrow{\beta} QR^{3}$$

$$\frac{2}{QR^{2}} QR^{2}$$

Both ketene dialkyl acetal⁸⁾ and ketene alkyl silyl acetals⁹⁾ undergo regioselective cyanoselenenylation with phenyl selenocyanate ($\underline{1}$) as shown in the Table. ¹⁰⁾ Thus ketene diethyl acetal ($\underline{2}$ a) reacted with a slight excess of $\underline{1}$ in ethanol at room temperature under argon to afford $\underline{3}$ a in 73% yield after purification by column chromatography. The 1 H-NMR spectrum of $\underline{3}$ a showed a singlet at δ 3.32 due to the methylene group carrying the phenylseleno moiety besides three other absorptions; δ (CDCl₃) 7.21(m, 5H, SePh), 3.68(q, J=7 Hz, 4H, OCH₂), and 1.20(t, J=7 Hz, 6H, CH₃). The presence of a cyano group was clearly demonstrated by IR(2230 cm⁻¹) and 13 C-NMR(δ 115.7). Similarly 1-tert-butyldimethylsiloxy-1-methoxyethylene ($\underline{2}$ b) gave $\underline{3}$ b in 64% yield. Interestingly, the cyanoselenenylation of ketene acetals ($\underline{2}$) appears neither stereospecific nor stereoselective unlike other olefins previously reported. 3,4) Thus, $\underline{2}$ c, obtained as a 7:3 mixture of stereoisomers from the enolate anion of methyl propionate 11), provided a single adduct $\underline{3}$ c in 78% yield, whereas $\underline{2}$ d afforded two stereoisomeric adducts $\underline{3}$ d in 7:2 ratio. No regioisomers were found in either case.

Upon oxidation with 30% hydrogen peroxide, the α,α -dioxy- β -phenylseleno carbonitriles ($\underline{3}c$ and $\underline{3}d$) were readily converted into β,γ -unsaturated α,α -dioxy carbonitriles ($\underline{4}c$ and $\underline{4}d$) in 91 and 94% yields, respectively(CH₂Cl₂, r.t., 4 h). ¹²)

117.5

Compd. number suffix	<u>2</u>			<u>3</u>		
	R ¹	R ²	R ³	Yield(%)	v(CN)(cm ⁻¹) ^b	¹³ C-NMR(CN)(δ) ^C
a	н	Et	Et	73	2230	115.7
b	Н	Me	^t BuMe ₂ Si	64	2215	116.7
С	Me	Me	^t BuMe ₂ Si	78	2220	116.5
d	-CH ₂ CH ₂ -		t _{BuMe2} Si	56(major)	2215	117.7

Table Cyanoselenenylation of Ketene Acetals ($\underline{2}$) with Phenyl Selenocyanate ($\underline{1}$) \underline{a}

Reactions were run in ethanol($\underline{2}a$) or in dichloromethane($\underline{2}b$, $\underline{b}2c$ and $\underline{2}d$) using 1.2 mole equiv. of $\underline{1}$ for 8-18 h(TLC control) at room temperature under argon. $\underline{b}0b$ tained as a thin film. $\underline{b}0b$ Heasured in CDCl $\underline{3}$ with tetramethylsilane as an internal standard.

16(minor)

2220

The reaction products described herein $(\underline{3} \text{ and } \underline{4})$ are regarded as α -oxo carbonitrile derivatives in which carbonyl group is protected as an acetal from nucleophilic attack. In view of the general observation that nucleophiles preferentially attack the carbonyl group of α -oxo carbonitriles with concomitant displacement of the cyano group, these compounds $(\underline{3} \text{ and } \underline{4})$ would be especially suited to construct the α -amino ketone structure by selective nucleophilic reactions at the cyano carbon. Further studies are now in progress.

References

- 1) Organoselenium Chemistry 6. Part 5; S. Tomoda, Y. Takeuchi, and Y. Nomura; Ref. 4.
- 2) S. Tomoda, Y. Takeuchi, and Y. Nomura, Chem. Lett., 1981, 1069.
- 3) S. Tomoda, Y. Takeuchi, and Y. Nomura, Tetrahedron Lett., 23, 1361(1982).
- 4) S. Tomoda, Y. Takeuchi, and Y. Nomura, J. Chem. Soc. Chem. Commun., 1982, in press.
- Recent examples; (a) B. M. Trost, T. Shibata, and S.J. Martin, J. Am. Chem. Soc., <u>104</u>, 3228 (1982). (b) J. Backvall and O.S. Andell, J. Chem. Soc. Chem. Commun., <u>1981</u>, 1098. (c) P.S. Elmes and W.R. Jackson, J. Am. Chem. Soc., <u>101</u>, 6128(1979).
- 6) For a recent review on α -oxo carbonitriles(acyl cyanides), see; S. Hünig and R. Schaller, Angew. Chem. Int. Ed. Engl., 21, 36(1982).
- 7) (a) D.E. Enders and H. Lotter, Tetrahedron Lett., <u>23</u>, 639(1982). (b) D.E. McClure, B.H. Ariso, J.H. Jones, and J.J. Baldwin, J. Org. Chem., <u>46</u>, 2431(1981).
- 8) S.M. McElvain and D. Kundiger, Org. Synth. Coll. Vol. <u>3</u>, 506(1955).
- 9) J.K. Rasmussen, Synthesis, <u>1977</u>, 91.
- 10) Structures of $\underline{3}$ were consistent with combustion analysis, IR and NMR(1 H and 13 C) spectral data.
- 11) M.V. Rathke and D.F. Sullivan, Synth. Commun., 3, 67(1973).
- 12) Structures of $\underline{4}c$ and $\underline{4}d$ were consistent with IR and NMR(^{1}H and ^{13}C).

(Received September 6, 1982)